Overdiagnosis in Genetic Screening: Implications for Primary Care Providers
(genetic information and how you act on it)

Barbara Dunn, NCI/Division of Cancer Prevention

Kathy Helzlsouer, NCI/Division of Cancer Control and Population Sciences

Greg Feero, Maine Dartmouth Family Medicine Residency Program

Stephen Taplin, NCI/Office of Global Health

Preventing Overdiagnosis 2017
Quebec City, Canada - August 17, 2017
• I have no conflict of interest.
Genetics

Disease (Cancer)

Overdiagnosis
Disease (Cancer)

Genetics

Risk

Probability

Sources of Uncertainty

[...probability and uncertainty are not quite the same thing...]

[riskiness]

[Uncertainty is caused by information that is yet to come because it is about a future cancer risk...
Dean 2016 Soc Sci & Med]
Genetics

Uncertainty
...in the context of
Primary Care

Disease (Cancer)

2017
Assessment of Genetic Risk, Cancer Risk and Cancer Diagnosis

analytic framework:

- Decision to Screen or Not to screen
- Genetic Risk Stratify
- Genetic Screening/Evaluation
- Disease Screening
- Disease Diagnosis
- Consequences: "Disease" Management (Overdiagnosis)
- Sequelae of Disease Diagnosis
- Sequelae of Genetic Evaluation: Managing genetic knowledge

Cancer/Disease Overdiagnosis
Assessment of Genetic Risk, Cancer Risk and Cancer Diagnosis

analytic framework:

Decision to Screen or Not to screen → Genetic Risk Stratify → Genetic Screening/Evaluation → Sequelae of Genetic Evaluation: Managing genetic knowledge

Genetic Risk Stratify → Disease Screening → Disease Diagnosis → Sequelae Of Disease Diagnosis

Cancer/Disease Overdiagnosis → Disease Screening → Disease Diagnosis → “Disease” Management (Overtreatment)
Assessment of Genetic Risk, Cancer Risk and Cancer Diagnosis

analytic framework:

- **Decision to Screen or Not to Screen**
 - Who should be (genetically) tested?
 - Use “demographic” assessment = strong family history, etc. versus population-based screening
 - Candidates for testing:
 - individual with disease/cancer
 - healthy relatives of person with cancer

- **Genetic Risk**
 - Stratify

- **Genetic Screening/Evaluation**

- **Sequelae of Genetic Evaluation**
 - Managing genetic knowledge

First encounter with “uncertainty”: Whom should I test?
Assessment of Genetic Risk, Cancer Risk and Cancer Diagnosis

analytic framework:

Decision to Screen or Not to screen
- Who should be (genetically) tested?

Genetic Risk Stratify

Genetic Screening/Evaluation
- What test should be used?
 - Single gene testing
 - Gene-panel based testing
 - Whole genome sequencing

Sequelae of Genetic Evaluation:
- Managing genetic knowledge

Consequences:
- Disease Management (Overtreatment)

Overdiagnosis
- Disease for Risk

Cancer/Disease

Sequelae Of Disease Diagnosis

Who should be (genetically) tested?
Assessment of Genetic Risk, Cancer Risk and Cancer Diagnosis

analytic framework:

Decision to screen or Not to screen
- Who should be (genetically) tested?

Genetic Risk Stratify
- What test should be used?

Genetic Screening/Evaluation

Sequelae of Genetic Evaluation:
- Managing genetic knowledge
 - Managing uncertainty
 - Incomplete Penetrance
 - Variants of Uncertain Significance (VUS)

Consequences:
- Disease Management (Overtreatment)

Disease Diagnosis

Disease Overdiagnosis
Assessment of Genetic Risk, Cancer Risk and Cancer Diagnosis

Analytic Framework:

- **Decision to Screen or Not to Screen**
- **Genetic Risk Stratify**
- **Genetic Screening/Evaluation**
- **Sequelae of Genetic Evaluation:**
 - Managing genetic knowledge
 - Disease Management
 - Primary Care Provider
 - Direct to Consumer/DTC vs Primary Care recommendations
 - Screening: risk algorithms
 - Use “demographic” assessment = strong family history, etc. *versus* population-based screening
 - Candidates for testing:
 - individual with disease/cancer
 - healthy relatives of person with cancer

- **Primary Care Provider**
 - Single gene testing
 - Gene-panel based testing
 - Whole genome sequencing

- **Primary Care Provider**
 - Interpreting genetic results
 - Massive amounts of data
 - Incidental findings
 - Managing care based on genetics
 - Managing uncertainty
 - Incomplete Penetrance
 - Variants of Uncertain Significance (VUS)
Definitions
2 types of genetics: **somatic** versus **germline**

- **Non-inherited mutations** – “Sporadic”
 - in only one cell or organ
 - NOT in eggs or sperm
 - Not inherited
 - **somatic genetics**: passed on cell to cell

- **Inherited/constitutional/germline mutations** – “Hereditary”
 - in all cells in offspring
 - inherited
 - cause cancer cluster—family
 - **germ line genetics**: passed on parent to child

Definitions: How does DNA fit into the picture?

gene = *piece of DNA, inherited*

The DNA Double Helix

“non-normal” DNA sequence

- Adenine (A)
- Cytosine (C)
- Thymine (T)
- Guanine (G)
Definitions

• **Mutation** = any alteration/change in the base-pair sequence of genetic material:
 – Disease-causing
 – Neutral/benign
 – “adaptive”

• **Mutation** = ~ variant thought to be pathogenic – deleterious mutation
Definitions

- **Mutation** = any alteration in the base-pair sequence of genetic material
- **Variant** = an alternative version to the usual/most commonly found base-pair sequence in a gene
Definitions

• **Mutation** = any alteration in the base-pair sequence of genetic material

• **Variant** = an alternative version to the usual/most commonly found base-pair sequence in a gene

• **Polymorphism** = common variations/variants, observed in ≥ 1% of the population (which population?)

 polymorphisms are **germline**, i.e. inherited, mutations that are **frequent** in a population

Science 293:594, July 27, 2001

Definitions

- **Mutation** = any alteration in the base-pair sequence of genetic material
- **Variant** = an alternative version to the usual/most commonly found base-pair sequence in a gene
- **Polymorphism** = common variations/variants, observed in ≥ 1% of the population (which population?)
- **Single nucleotide variant** = change in a single base
- **SNP/single nucleotide polymorphism** = the variant is ~ frequently observed in a population
Definitions: How does DNA fit into the picture?

Gene = piece of DNA, inherited

The DNA Double Helix

“All changes in DNA sequence are **NOT equal**! Not all changes affect the function of the gene product.”
Definitions

• **Mutation** = any alteration in the base-pair sequence of genetic material

• **Polymorphism** = common variations, observed in ≥ 1% of the population (which population?)

• **Single nucleotide variant** = change in a single base

• **SNP/single nucleotide polymorphism** = the variant is ~ frequently observed in a population

• **VUS/variant of uncertain significance** = not frequent in population; not classified as pathogenic - not enough data available to make a classification
Definitions

• **Mutation** = any alteration in the base-pair sequence of genetic material

• **Polymorphism** = common variations, observed in $\geq 1\%$ of the population (which population?)

• **Single nucleotide variant** = change in a single base

• **SNP/single nucleotide polymorphism** = the variant is \sim frequently observed in a population

• **VUS/variant of uncertain significance** = not frequent in pop.; not classified as pathogenic

• **Incidental findings** = findings not related to the specific reason a test was ordered - \simanalogous to “incidental” findings on imaging tests

Kang 2016 J Am Coll Radiol
Definitions

• **Mutation** = any alteration in the base-pair sequence of genetic material

• **Polymorphism** = common variations, observed in ≥ 1% of the population (which population?)

• **Single nucleotide variant** = change in a single base

• **SNP/single nucleotide polymorphism** = the variant is ~ frequently observed in a population

• **VUS/variant of uncertain significance** = not frequent in pop.; not classified as pathogenic

• **Incidental findings** = findings not related to the specific reason a test was ordered - ~analogous to “incidental” findings on imaging tests

• **Penetrance** = proportion of individuals w/a given variant who express the trait/disease/phenotype
Definitions: Risk / Probability in Genetics

- Probability of **inheriting** a deleterious variant.

- **Penetrance** – just because I have a deleterious mutation doesn’t mean I have 100% chance of getting the disease. Penetrance has its own element of probability. → **Uncertainty**

The danger is people see genetic variants as disease – and they are not disease!

Primary Care Provider must be able to communicate this...
Assessment of Genetic Risk, Cancer Risk and Cancer Diagnosis

analytic framework:

- **Decision to screen or Not to screen**

 - Primary Care Provider
 - Direct to Consumer/DTC vs Primary Care recommendations
 - Screening: risk algorithms
 - Who should be (genetically) tested?

- **Genetic Risk Stratify**

 - Genetic Screening/Evaluation
 - Primary Care Provider
 - Single gene testing
 - Gene-panel based testing
 - Massively parallel sequencing
 - Whole genome sequencing
 - Whole exome sequencing
 - Interpreting genetic results
 - Analytic validity

 - Managing uncertainty
 - Incomplete Penetrance
 - Variants of Uncertain Significance (VUS)

- **Sequelae of Genetic Evaluation:**

 - Managing genetic knowledge
 - Consequences: Disease Management (Overtreatment)

 - Primary Care Provider
 - DTC vs Primary Care recommendations
 - Screening: risk algorithms
 - Who should be (genetically) tested?

 - How reliable is the actual laboratory test? (analytic validity)

 - Interpreting genetic results
 - Massive amounts of data
 - Incidental findings
 - Managing care based on genetics

 - Managing uncertainty
 - Incomplete Penetrance
 - Variants of Uncertain Significance (VUS)
Assessment of Genetic Risk, Cancer Risk and Cancer Diagnosis

analytic framework:

Demographic Assessment → Genetic Screening/Evaluation → Sequelae of Genetic Evaluation

Uncertainty and challenges to Primary Care Provider emerge at all stages of Genetic Testing

Consequences: Disease Management (Overdiagnosis, etc.)